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Abstract—Approximate nearest neighbor (ANN) search has achieved great success in many tasks. However, 

existing popular methods for ANN search, such as hashing and quantization methods, are designed for static 

databases only. They cannot handle well the database with data distribution evolving dynamically, due to the high 

computational effort for retraining the model based on the new database. In this paper, we address the problem by 

developing an online product quantization (online PQ) model and incrementally updating the quantization codebook 

that accommodates to the incoming streaming data. Moreover, to further alleviate the issue of large scale 

computation for the online PQ update, we design two budget constraints for the model to update partial PQ 

codebook instead of all. We derive a loss bound which guarantees the performance of our online PQ model. 

Furthermore, we develop an online PQ model over a sliding window with both data insertion and deletion supported, 

to reflect the real-time behaviour of the data. The experiments demonstrate that our online PQ model is both time-

efficient and effective for ANN search in dynamic large scale databases compared with baseline methods and the 

idea of partial PQ codebook update further reduces the update cost. 

Index Terms:—Online indexing model, product quantization, nearest neighbour search. 

 

I. INTRODUCTION 

Computing Euclidean distances between high 

dimensional vectors is a fundamental requirement in 

many applications. It is used, in particular, for nearest 

neighbor (NN) search. Nearest neighbor search is 

inherently expensive due to the curse of 

dimensionality [3], [4]. Focusing on the D-

dimensional Euclidean space R D, the problem is to 

find the element NN(x), in a finite set Y ⊂ R D of n 

vectors, minimizing the distance to the query vector x 

∈ R D: NN(x) = arg min y∈Y d(x, y). (1) Several 

multi-dimensional indexing methods, such as the 

popular KD-tree [5] or other branch and bound 

techniques, have been proposed to reduce the search 

time. However, for high dimensions it turns out [6] 

that such approaches are not more efficient than the 

bruteforce exhaustive distance calculation, whose 

complexity is O(nD). There is a large body of 

literature [7], [8], [9] on algorithms that overcome 

this issue by performing approximate nearest 

neighbor (ANN) search. The key idea This work was 

partly realized as part of the Quaero Programme, 

funded by OSEO, French State agency for 

innovation. It was originally published as a technical 

report [1] in August 2009. It is also related to the 

work [2] on source coding for nearest neighbor 

search. shared by these algorithms is to find the NN 

with high probability “only”, instead of probability 1. 

Most of the effort has been devoted to the Euclidean 

distance, though recent generalizations have been 

proposed for other metrics [10]. In this paper, we 

consider the Euclidean distance, which is relevant for 

many applications. In this case, one of the most 

popular ANN algorithms is the Euclidean Locality-

Sensitive Hashing (E2LSH) [7], [11], which provides 

theoretical guarantees on the search quality with 

limited assumptions. It has been successfully used for 

local descriptors [12] and 3D object indexing [13], 

[11]. However, for real data, LSH is outperformed by 

heuristic methods, which exploit the distribution of 

the vectors. These methods include randomized KD-

trees [14] and hierarchical k-means [15], both of 

which are implemented in the FLANN selection 

algorithm [9]. ANN algorithms are typically 

compared based on the trade-off between search 
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quality and efficiency. However, this trade-off does 

not take into account the memory requirements of the 

indexing structure. In the case of E2LSH, the 

memory usage may even be higher than that of the 

original vectors. Moreover, both E2LSH and FLANN 

need to perform a final re-ranking step based on exact 

L2 distances, which requires the indexed vectors to 

be stored in main memory if access speed is 

important. This constraint seriously limits the number 

of vectors that can be handled by these algorithms. 

Only recently, researchers came up with methods 

limiting the memory usage. This is a key criterion for 

problems involving large amounts of data [16], i.e., 

in large-scale scene recognition [17], where millions 

to billions of images have to be indexed. In [17], 

Torralba et al. represent an image by a single global 

GIST descriptor [18] which is mapped to a short 

binary code. When no supervision is used, this 

mapping is learned such that the neighborhood in the 

embedded space defined by the Hamming distance 

reflects the neighborhood in the Euclidean space of 

the original features. The search of the Euclidean 

nearest neighbors is then approximated by the search 

of the nearest neighbors in terms of Hamming 

distances between codes. In [19], spectral hashing 

(SH) is shown to outperform the binary codes 

generated by the restricted Boltzmann machine [17], 

boosting and LSH. Similarly, the Hamming 

embedding method of Jegou et al. [20], 2 [21] uses a 

binary signature to refine quantized SIFT or GIST 

descriptors in a bag-of-features image search 

framework. In this paper, we construct short codes 

using quantization. The goal is to estimate distances 

using vectorto-centroid distances, i.e., the query 

vector is not quantized; codes are assigned to the 

database vectors only. This reduces the quantization 

noise and subsequently improves the search quality. 

To obtain precise distances, the quantization error 

must be limited. Therefore, the total number k of 

centroids should be sufficiently large, e.g., k = 2
64

 for 

64-bit codes. This raises several issues on how to 

learn the codebook and assign a vector. First, the 

number of samples required to learn the quantizer is 

huge, i.e., several times k. Second, the complexity of 

the algorithm itself is prohibitive. Finally, the amount 

of computer memory available on Earth is not 

sufficient to store the floating point values 

representing the centroids. The hierarchical k-means 

see (HKM) improves the efficiency of the learning 

stage and of the corresponding assignment procedure 

[15]. However, the aforementioned limitations still 

apply, in particular with respect to memory usage and 

size of the learning set. Another possibility are scalar 

quantizers, but they offer poor quantization error 

properties in terms of the trade-off between memory 

and reconstruction error. Lattice quantizers offer 

better quantization properties for uniform vector 

distributions, but this condition is rarely satisfied by 

real world vectors. In practice, these quantizers 

perform significantly worse than k-means in indexing 

tasks [22]. In this paper, we focus on product 

quantizers. To our knowledge, such a semi-structured 

quantizer has never been considered in any nearest 

neighbor search method. The advantages of our 

method are twofold. First, the number of possible 

distances is significantly higher than for competing 

Hamming embedding methods [20], [17], [19], as the 

Hamming space used in these techniques allows for a 

few distinct distances only. Second, as a byproduct of 

the method, we get an estimation of the expected 

squared distance, which is required for ε-radius 

search or for using Lowe’s distance ratio criterion 

[23]. The motivation of using the Hamming space in 

[20], [17], [19] is to compute distances efficiently. 

Note, however, that one of the fastest ways to 

compute Hamming distances consists in using table 

lookups. Our method uses a similar number of table 

lookups, resulting in comparable efficiency. An 

exhaustive comparison of the query vector with all 

codes is prohibitive for very large datasets. We, 

therefore, introduce a modified inverted file structure 

to rapidly access the most relevant vectors. A coarse 

quantizer is used to implement this inverted file 

structure, where vectors corresponding to a cluster 

(index) are stored in the associated list. The vectors 

in the list are represented by short codes, computed 

by our product quantizer, which is used here to 

encode the residual vector with respect to the cluster 

center. The interest of our method is validated on two 

kinds of vectors, namely local SIFT [23] and global 

GIST [18] descriptors. A comparison with the state of 

the art shows that our approach outperforms existing 

techniques, in particular spectral hashing [19], 

Hamming embedding [20] and FLANN [9]. Our 

paper is organized as follows. Section II introduces 

the notations for quantization as well as the product 

quantizer used by our method. Section III presents 

our approach for NN search and Section IV 
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introduces the structure used to avoid exhaustive 

search. An evaluation of the parameters of our 

approach and a comparison with the state of the art is 

given in Section V.S 

II. BACKGROUND: 

QUANTIZATION, PRODUCT 

QUANTIZER  

 

A large body of literature is available on vector 

quantization, see [24] for a survey. In this section, we 

restrict our presentation to the notations and concepts 

used in the rest of the paper. A. Vector quantization 

Quantization is a destructive process which has been 

extensively studied in information theory [24]. Its 

purpose is to reduce the cardinality of the 

representation space, in particular when the input 

data is real-valued. Formally, a quantizer is a 

function q mapping a Ddimensional vector x ∈ R D 

to a vector q(x) ∈ C = {ci ;i ∈ I}, where the index set 

I is from now on assumed to be finite: I = 0 . . . k − 1. 

The reproduction values ci are called centroids. The 

set of reproduction values C is the codebook of size 

k. The set Vi of vectors mapped to a given index i is 

referred to as a (Voronoi) cell, and defined as Vi , {x 

∈ R D : q(x) = ci}. 

The k cells of a quantizer form a partition of R D. By 

definition, all the vectors lying in the same cell Vi are 

reconstructed by the same centroid ci . The quality of 

a quantizer is usually measured by the mean squared 

error between the input vector x and its reproduction 

value q(x): MSE(q) = EX d(q(x), x) 2 = Z p(x) d q(x), 

x2 dx 

where d(x, y) = ||x − y|| is the Euclidean distance 

between x and y, and where p(x) is the probability 

distribution function corresponding the random 

variable X. For an arbitrary probability distribution 

function, Equation 3 is numerically computed using 

Monte-Carlo sampling, as the average of ||q(x) − x||2 

on a large set of samples. In order for the quantizer to 

be optimal, it has to satisfy two properties known as 

the Lloyd optimality conditions. First, a vector x 

must be quantized to its nearest codebook centroid, in 

terms of the Euclidean distance: q(x) = arg min ci∈C 

d(x, ci). (4) As a result, the cells are delimited by 

hyperplanes. The second Lloyd condition is that the 

reconstruction value must be the expectation of the 

vectors lying in the Voronoi cell: ci = EX x|i = Z Vi 

p(x) x dx. (5) The Lloyd quantizer, which 

corresponds to the kmeans clustering algorithm, finds 

a near-optimal codebook by iteratively assigning the 

vectors of a training set to centroids and re-estimating 

these centroids from the assigned vectors. In the 

following, we assume that the two Lloyd conditions 

hold, as we learn the quantizer using k-means. Note, 

however, that k-means does only find a local 

optimum in terms of quantization error. Another 

quantity that will be used in the following is the mean 

squared distortion ξ(q, ci) obtained when 

reconstructing a vector of a cell Vi by the 

corresponding centroid ci . Denoting by pi = P q(x) = 

ci  the probability that a vector is assigned to the 

centroid ci , it is computed as ξ(q, ci) = 1 pi Z Vi d x, 

q(x) 2 p(x) dx. (6) Note that the MSE can be obtained 

from these quantities as MSE(q) = X i∈I pi ξ(q, ci). 

(7) The memory cost of storing the index value, 

without any further processing (entropy coding), is 

⌈log2 k⌉ bits. Therefore, it is convenient to use a 

power of two for k, as the code produced by the 

quantizer is stored in a binary memory. B. Product 

quantizers Let us consider a 128-dimensional vector, 

for example the SIFT descriptor [23]. A quantizer 

producing 64- bits codes, i.e., “only” 0.5 bit per 

component, contains k = 264 centroids. Therefore, it 

is impossible to use Lloyd’s algorithm or even HKM, 

as the number of samples required and the 

complexity of learning the quantizer are several times 

k. It is even impossible to store the D × k floating 

point values representing the k centroids. Product 

quantization is an efficient solution to address these 

issues. It is a common technique in source coding, 

which allows to choose the number of components to 

be quantized jointly (for instance, groups of 24 

components can be quantized using the powerful 

Leech lattice). The input vector x is split into m 

distinct sub vectors uj , 1 ≤ j ≤ m of dimension D∗ = 

D/m, where D is a multiple of m. The sub vectors are 

quantized separately using m distinct quantizers. A 

given vector x is therefore mapped as follows: x1, ..., 

xD∗ | {z } u1(x) , ..., xD−D∗+1, ..., xD | {z } um(x) 

→ q1 u1(x)), ..., qm(um(x)  , (8) where qj is a low-

complexity quantizer associated with the j th sub 

vector. With the subquantizer qj we associate the 

index set Ij , the codebook Cj and the corresponding 

reproduction values cj,i. A reproduction value of the 

product quantizer is identified by an element of the 

product index set I = I1 × . . . × Im. The codebook is 

therefore defined as the Cartesian product C = C1 × . 
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. . × Cm, (9) and a centroid of this set is the 

concatenation of centroids of the m subquantizers. 

From now on, we assume that all subquantizers have 

the same finite number k ∗ of reproduction values. In 

that case, the total number of centroids is given by k 

= (k ∗ ) m. (10) Note that in the external case where 

m = D, the components of a vector x are all quantized 

separately. Then the product quantizer turns out to be 

a scalar quantizer, where the quantization function 

associated with each component may be different. 

The strength of a product quantizer is to produce a 

large set of centroids from several small sets of 

centroids: those associated with the subquantizers. 

When learning the subquantizers using Lloyd’s 

algorithm, a limited number of vectors is used, but 

the codebook is, to some extent, still adapted to the 

data distribution to represent. The complexity of 

learning the quantizer is m times the complexity of 

performing k-means clustering with k ∗ centroids of 

dimension D∗ 

 
 

Table I Memory Usage Of The Codebook And 

Assignment Complexity For Different Quantizers. 

Hkm Is Parametrized By Tree Height L And The 

Branching Factor Bf . 

Storing the codebook C explicitly is not efficient. 

Instead, we store the m × k ∗ centroids of all the 

subquantizers, i.e., m D∗ k ∗ = k ∗ D floating points 

values. Quantizing an element requires k ∗D floating 

point operations. Table I summarizes the resource 

requirements associated with k-means, HKM and 

product k-means. The product quantizer is clearly the 

the only one that can be indexed in memory for large 

values of k. In order to provide good quantization 

properties when choosing a constant value of k ∗ , 

each subvector should have, on average, a 

comparable energy. One way to ensure this property 

is to multiply the vector by a random orthogonal 

matrix prior to quantization. However, for most 

vector types this is not required and not 

recommended, as consecutive components are often 

correlated by construction and are better quantized 

together with the same subquantizer. As the 

subspaces are orthogonal, the squared distortion 

associated with the product quantizer is MSE(q) = X j 

MSE(qj ), (11) where MSE(qj ) is the distortion 

associated with quantizer qj . Figure 1 shows the 

MSE as a function of the code length for different 

(m,k ∗ ) tuples, where the code length is l = m log2 k 

∗ , if k ∗ is a power of two. The curves are obtained 

for a set of 128-dimensional SIFT descriptors, see 

section V for details. One can observe that for a fixed 

number of bits, it is better to use a small number of 

subquantizers with many centroids than having many 

subquantizers with few bits. At the extreme when m 

= 1, the product quantizer becomes a regular k-means 

codebook. High values of k ∗ increase the 

computational cost of the quantizer, as shown by 

Table I. They also increase the memory usage of 

storing the centroids (k ∗ × D floating point values), 

which further reduces the efficiency if the centroid 

look-up table does no longer fit in cache memory. In 

the case where m = 1, we cannot afford using more 

than 16 bits to keep this cost tractable. Using 

 
Fig. 1. SIFT: quantization error associated with 

the parameters m and k ∗ . 
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Fig. 2. Illustration of the symmetric and 

asymmetric distance computation. The distance 

d(x, y) is estimated with either the distance d(q(x), 

q(y)) (left) or the distance d(x, q(y)) (right). The 

mean squared error on the distance is on average 

bounded by the quantization error. 

k ∗ = 256 and m = 8 is often a reasonable choice. 

 

III. PROPOSED SYSTEM 

We have presented our online PQ method to 

accommodate streaming data. In addition, we employ 

two budget constraints to facilitate partial codebook 

update to further alleviate the update time cost. A 

relative loss bound has been derived to guarantee the 

performance of our model. In addition, we propose 

an online PQ over sliding window approach, to 

emphasize on the real-time data. Experimental results 

show that our method is significantly faster in 

accommodating the streaming data, outperforms the 

competing online hashing methods and unsupervised 

batch mode hashing method in terms of search 

accuracy and update time cost, and attains 

comparable search quality with batch mode PQ. 

 

. 

IV. ALGORITHM 

ONLINE PQ 

 

1: initialize PQ with the M ∗ K sub-codewords z 0 

1,1 , ..., z0 m,k, ..., z0 M,K using a initial set of data  

 

2: initialize C 0 1,1 , ..., C0 m,k, ..., C0 M,K to be the 

cluster sets that contain the index of the initial data 

that belong to the cluster  

 

3: create counters n1,1, ..., nm,k, ..., nM,K for each 

cluster and initialize each nm,k to be the number of 

initial data points assigned to the corresponding C 0 

m,k  

 

4: for t = 1, 2, 3, ... do  

 

5: get a new data x t  

 

6: partition x t into M subspaces [x t 1 , ..., xt M]  

 

7: in each subspace m ∈ {1, ..., M}, determine and 

assign the nearest sub-codeword z t m,k for each 

subvector x t m  

 

8: update the cluster set C t m,k ← C t−1 m,k ∪ 

{ind} ∀m ∈ {1, ..., M} where ind is the index number 

of x t  

 

9: update the number of points for each sub-

codeword: nm,k ← nm,k + 1 ∀m ∈ {1, ..., M}  

 

10: update the sub-codeword: z t+1 m,k ← z t m,k + 

1 nm,k (x t m − z t m,k) ∀m ∈ {1, ..., M} 

11: end for 

 
Fig. 3: A schematic figure of online product 

quantization with budget constraints. There are 

two subspaces where each subspace has two sub-

codewords. After the codebook adapting to the 

new data, two of the four sub-codewords get 

hugely changed (highlighted in a red dashed 

rectangle) and the rest two sub-code words barely 

changed. 
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IV. EXPERIMENTS 

We conduct a series of experiments on several real-

world datasets to evaluate the efficiency and 

effectiveness of our model. In this section, we first 

introduce the datasets used in the experiments. We 

then show the convergence of our online PQ model to 

the batch PQ method in terms of the quantization 

error, and then compare the online version and the 

mini-batch version of our online PQ model. After 

that, we analyze the impact of the parameters α and λ 

in update constraints. Finally, we compare our 

proposed model with existing related hashing 

methods for different applications. 

 

5.1 Datasets and evaluation criterion 

 

There are one text dataset, four image datasets and 

two video datasets employed to evaluate the proposed 

method. 20 Newsgroups Data (News20) [35] consists 

of chronologically ordered 18,845 newsgroup 

messages. Caltech-101 [36] consists of 9144 images 

and each image belongs to one of the 101 categories. 

Half dome [37] includes 107,732 image patches 

obtained from Photo Tourism reconstructions from 

Half Dome (Yosemite). Sun397 [38] contains around 

108K images in 397 scenes. Image Net [39] has over 

1.2 million images with a total of 1000 classes. 

YoutubeFaces1 contains 3,425 videos of 1,595 

different people, with a total of 621,126 frames. UQ 

VIDEO2 consists of 169,952 videos with 3,305,525 

frames in total. We use 300-D doc2vec features to 

represent each news article in News20 and 512-D 

GIST features to represent each image in the four 

image datasets. We use two different features, 480-D 

Center-Symmetric LBP (CSLBP) and 560-D Four-

Patch LBP (FPLBP) to represent each frame in 

YoutubeFaces. 162-D HSV feature is used in UQ 

VIDEO dataset. Table 3 shows detailed statistical 

information about datasets used in evaluation. We 

measure the performance of our proposed model by 

the model update time and the search quality 

measurement recall@R adopted in [13]. We use 

recall@20 which indicates that fraction of the query 

for which the nearest neighbor is in the top 20 

retrieved images by the model. 

 

5.2 CONVERGENCE  
The data instances in the entire dataset are input 

sequentially to our online PQ model. We run our 

algorithm for  

1. https://www.cs.tau.ac.il/ wolf/ytfaces/  

2. http://staff.itee.uq.edu.au/shenht/UQ VIDEO/ 

 

 
 

Fig. 5: Convergence of online PQ using ImageNet 

dataset. Effective iterations are shown on the x-

axis. 

 
50 effective iterations3. To show the convergence of 

our online model, we compare its training loss at 

each iteration with the one of the batch PQ method. 

The training loss is computed as the averaged 

quantization error for all data points in one pass. 

Figure 5 shows that the training loss of our online 

model converges to the one of the batch model, 

implying that codewords learned from the online PQ 

model are similar to the ones learned from the batch 

PQ approach. Therefore, the performance of the 

online PQ model converges to the batch PQ 

performance. 

 
Fig. 6: The left figure shows the update time 
for each iteration of update. The time of the 
online version for each iteration sums up the 
update time of the streaming data 
corresponding to the ones in the mini-batch. 
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The right figure shows the recall@1, 20 and 
100 for each iteration. 
 

VI.CONCLUSIONS 
In this paper, we have presented our online PQ 

method to accommodate streaming data. In addition, 

we employ two budget constraints to facilitate partial 

codebook update to further alleviate the update time 

cost. A relative loss bound has been derived to 

guarantee the performance of our model. In addition, 

we propose an online PQ over sliding window 

approach, to emphasize on the real-time data. 

Experimental results show that our method is 

significantly faster in accommodating the streaming 

data, outperforms the competing online and batch 

hashing methods in terms of search accuracy and 

update time cost, and attains comparable search 

quality with batch mode PQ. In our future work, we 

will extend the online update for other MCQ 

methods, leveraging the advantage of them in a 

dynamic database environment to enhance the search 

performance. Each of them has challenges to be 

effectively extended to handle streaming data. For 

example, CQ [22] and SQ [23] require the old data 

for the codewords update at each iteration due to the 

constant inter-dictionary-elementproduct in the 

model constraint. AQ [21] requires a high 

computational encoding procedure, which will 

dominate the update process in an online fashion. TQ 

[24] needs to consider the tree graph update together 

with the codebook and the indices of the stored data. 

Extensions to these methods can be developed to 

address the challenges for online update. In addition, 

online PQ model can be extended to handle other 

learning problems such as multioutput learning [40], 

[41]. Moreover, the theoretical bound for the online 

model will be further investigated. 
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